
Botworld 1.1

(Technical Report)

Nate Soares, Benja Fallenstein

Machine Intelligence Research Institute
2030 Addison St. #300

Berkeley, CA 94704, USA

{nate,benja}@intelligence.org

April 10, 2014

Contents

1 Introduction 2
1.1 Overview . 3
1.2 Cartesianism in Botworld . 5

2 Implementation 7
2.1 Robots . 8
2.2 Items . 9
2.3 Commands and actions . 10
2.4 The step function . 11

2.4.1 Environment Phase . 12
2.4.2 Computaiton phase . 18
2.4.3 Summary . 19

2.5 Games . 20

3 Concluding notes 22

A Grid Manipulation 23
A.1 Directions . 24
A.2 Botworld Grids . 24

B Constree Language 26
B.1 Robot/machine interactions . 28
B.2 Encoding and Decoding . 29

C Helper Functions 34

Bibliography 36

1

Chapter 1

Introduction

This report introduces Botworld, a cellular automaton that provides a toy en-
vironment for studying self-modifying agents.

The traditional agent framework, used for example in Markov Decision Pro-
cesses [8] and in Marcus Hutter’s universal agent AIXI [4], splits the universe
into an agent and an environment, which interact only via discrete input and
output channels.

Such formalisms are perhaps ill-suited for real self-modifying agents, which
are embedded within their environments [5]. Indeed, the agent/environment
separation is somewhat reminiscent of Cartesian dualism: any agent using this
framework to reason about the world does not model itself as part of its environ-
ment. For example, such an agent would be unable to understand the concept
of the environment interfering with its internal computations, e.g. by inducing
errors in the agent’s RAM through heat [3].

Intuitively, this separation does not seem to be a fatal flaw, but merely a
tool for simplifying the discussion. We should be able to remove this “Carte-
sian” assumption from formal models of intelligence. However, the concrete
non-Cartesian models that have been proposed (such as Orseau and Ring’s
formalism for space-time embedded intelligence [5], Vladimir Slepnev’s mod-
els of updateless decision theory [6, 7], and Yudkowsky and Herreshoff’s tiling
agents [9]) depart significantly from their Cartesian counterparts.

Botworld is a toy example of the type of universe that these formalisms
are designed to reason about: it provides a concrete world containing agents
(“robots”) whose internal computations are a part of the environment, and
allows us to study what happens when the Cartesian barrier between an agent
and its environment breaks down. Botworld allows us to write decision problems
where the Cartesian barrier is relevant, program actual agents, and run the
system.

As it turns out, many interesting problems arise when agents are embedded
in their environment. For example, agents whose source code is readable may
be subjected to Newcomb-like problems [1] by entities that simulate the agent
and choose their actions accordingly.

2

Furthermore, certain obstacles to self-reference arise when non-Cartesian
agents attempt to achieve confidence in their future actions. Some of these
issues are raised by Yudkowsky and Herreshoff [9]; Botworld gives us a concrete
environment in which we can examine them.

One of the primary benefits of Botworld is concreteness: when working with
abstract problems of self-reference, it is often very useful to see a concrete de-
cision problem (“game”) in a fully specified world that directly exhibits the
obstacle under consideration. Botworld makes it easier to visualize these obsta-
cles.

Conversely, Botworld also makes it easier to visualize suggested agent ar-
chitectures, which in turn makes it easier to visualize potential problems and
probe the architecture for edge cases.

Finally, Botworld is a tool for communicating. It is our hope that Botworld
will help others understand the varying formalisms for self-modifying agents by
giving them a concrete way to visualize such architectures being implemented.
Furthermore, Botworld gives us a concrete way to illustrate various obstacles,
by implementing Botworld games in which the obstacles arise.

Botworld has helped us gain a deeper understanding of varying formalisms
for self-modifying agents and the obstacles they face. It is our hope that Bot-
world will help others more concretely understand these issues as well.

1.1 Overview

Botworld is a high level cellular automaton: the contents of each cell can be
quite complex. Indeed, cells may house robots with register machines, which
are run for a fixed amount of time in each cellular automaton step. A brief
overview of the cellular automaton follows. Afterwards, we will present the
details along with a full implementation in Haskell.

Botworld consists of a grid of cells, each of which is either a square or an
impassable wall. Each square may contain an arbitrary number of robots and
items. Robots can navigate the grid and possess tools for manipulating items.
Some items are quite useful: for example, shields can protect robots from attacks
by other robots. Other items are intrinsically valuable, though the values of
various items depends upon the game being played.

Among the items are robot parts, which the robots can use to construct other
robots. Robots may also be broken down into their component parts (hence the
necessity for shields). Thus, robots in Botworld are quite versatile: a well-
programmed robot can reassemble its enemies into allies or construct a robot
horde.

Because robots are transient objects, it is important to note that players
are not robots. Many games begin by allowing each player to specify the initial
state of a single robot, but clever players will write programs that soon dis-
tribute themselves across many robots or construct fleets of allied robots. Thus,
Botworld games are not scored depending upon the actions of the robot. In-
stead, each player is assigned a home square (or squares), and Botworld games

3

are scored according to the items carried by all robots that are in the player’s
home square at the end of the game. (We may imagine these robots being
airlifted and the items in their possession being given to the player.)

Robots cannot see the contents of robot register machines by default, though
robots can execute an inspection to see the precise state of another robot’s
register machine. This is one way in which the Cartesian boundary can break
down: It may not be enough to choose an optimal action, if the way in which
this action is computed can matter.

For example, imagine a robot which tries to execute an action that it can
prove will achieve a certain minimum expected utility umin. In the traditional
agent framework, this can imply an optimality property: if there is any pro-
gram p our robot could have run such that our robot can prove that p would
have received expected utility ≥ umin, then our robot will receive expected util-
ity ≥ umin (because it can always do what that other program would have done).
But suppose that this robot is placed into an environment where another robot
reads the contents of the first robot’s register machine, and gives the first robot
a reward if and only if the first robot runs the program “do nothing ever”. Then,
since this is not the program our robot runs, it will not receive the reward.

It is important to note that there are two different notions of time in Bot-
world. The cellular automaton evolution proceeds in discrete steps according to
the rules described below. During each cellular automaton step, the machines
inside the robots are run for some finite number of ticks.

Like any cellular automaton, Botworld updates in discrete steps which apply
to every cell. Each cell is updated using only information from the cell and
its immediate neighbors. Roughly speaking, the step function proceeds in the
following manner for each individual square:

1. The output register of the register machine of each robot in the square is
read to determine the robot’s command. Note that robots are expected
to be initialized with their first command in the output register.

2. The commands are used in aggregate to determine the robot actions. This
involves checking for conflicts and invalid commands.

3. The list of items lying around in the square is updated according to the
robot actions. Items that have been lifted or used to create robots are
removed, items that have been dropped are added.

4. Robots incoming from neighboring squares are added to the robot list.
5. Newly created robots are added to the robot list.
6. The input registers are set on all robots. Robot input includes a list of all

robots in the square (including exiting, entering, destroyed, and created
robots), the actions that each robot took, and the updated item list.

7. Robots that have exited the square or that have been destroyed are re-
moved from the robot list.

8. All remaining robots have their register machines executed (and are ex-
pected to leave a command in the output register.)

These rules allow for a wide variety of games, from NP-hard knapsack pack-
ing games to difficult Newcomb-like games such as a variant of the Parfit’s

4

hitchhiker problem (wherein a robot will drop a valuable item only if it, after
simulating your robot, concludes that your robot will give it a less valuable
item).

1.2 Cartesianism in Botworld

Though we have stated that we mean to study non-Cartesian formalizations
of intelligence, Botworld does in fact have a “Cartesian” boundary. The robot
parts are fundamental objects, the machine registers are non-reducible. The
important property of Botworld is not that it lacks a Cartesian boundary, but
that the boundary is breakable.

In the real world the execution of a computer program is unaffected by the
environment most of the time (except via the normal input channels). While
the contents of a computer’s RAM can be changed by heating it up with a desk
lamp [3], they are usually not. An Artificial General Intelligence (AGI) would
presumably make use of this fact. Thus, an AGI may commonly wish to ensure
that its Cartesian boundary is not violated in this way over some time period
(during which it can make use of the nice properties of Cartesian frameworks).
Botworld attempts to model this in a simple way by requiring agents to contend
with the possibility that they may be destroyed by other robots.

More problematically, in the real world, the internals of a computer program
will always affect the environment—for example, through waste heat emitted by
the computer—but it seems likely that these effects are usually unpredictable
enough that an AGI will not be able to improve its performance by carefully
choosing e.g. the pattern of waste heat it emits. However, an AGI will need to
ensure that these unavoidable violations of its Cartesian boundary will in fact
not make an expected difference to its goals. Botworld sidesteps this issue and
only requires robots to deal with a more tractable issue: Contending with the
possibility that their source code might be read by another agent.

Our model is not realistic, but it is simple to reason about. For all that
the robot machines are not reducible, the robots are still embedded in their
environment, and they can still be read or destroyed by other agents. We hope
that this captures some of the complexity of naturalistic agents, and that it will
serve as a useful test bed for formalisms designed to deal with this complexity.
Although being able to deal with the challenges of Botworld is presumably not
a good indicator that a formalism will be able to deal with all of the challenges
of naturalistic agents, it allows us to see in concrete terms how it deals with
some of them.

In creating Botworld we tried to build something implementable by a lower-
level system, such as Conway’s Game of Life [2]. It is useful to imagine such an
implementation when considering Botworld games.

Future versions of Botworld may treat the robot bodies as less fundamental
objects. In the meantime, we hope that it is possible to picture an imple-
mentation where the Cartesian boundary is much less fundamental, and to use
Botworld to gain useful insights about agents embedded within their environ-

5

ment. Our intent is that when we apply a formalism for naturalistic agents to
the current implementation of Botworld, then there will be a straightforward
translation to an application of the same formalism to an implementation of
Botworld in (say) the Game of Life.

6

Chapter 2

Implementation

This report is a literate Haskell file, so we must begin the code with the module
definition and the Haskell imports.

module Botworld where
import Prelude hiding (lookup)
import Control .Applicative ((<$>), (<∗>))
import Control .Monad (join)
import Data.List (delete, elemIndices)
import Data.Map (Map, assocs, fromList , lookup,mapWithKey)
import Data.Maybe (catMaybes, isJust ,mapMaybe)

Botworld cells may be either walls (which are immutable and impassible) or
squares, which may contain both robots and items which the robots carry and
manipulate. We represent cells using the following type:

type Cell = Maybe Square

The interesting parts of Botworld games happen in the squares.

data Square = Square
{robotsIn :: [Robot]
, itemsIn :: [Item]
} deriving (Eq ,Show)

The ordering is arbitrary, but is used by robots to specify the targets of their
actions: a robot executing the command Lift 3 will attempt to lift the item at
index 3 in the item list of its current square.

Botworld, like any cellular automaton, is composed of a grid of cells.

type Botworld = Grid Cell

We do not mean to tie the specification of Botworld to any particular grid
implementation: Botworld grids may be finite or infinite, wrapping (Pac-Man
style) or non-wrapping. The specific implementation used in this report is some-
what monotonous, and may be found in Appendix A.

7

2.1 Robots

Each robot can be visualized as a little metal construct on wheels, with a little
camera on the front, lifter-arms on the sides, a holding area atop, and a register
machine ticking away deep within.

data Robot = Robot
{frame :: Frame
, inventory :: [Item]
, processor :: Processor
,memory :: Memory
} deriving (Eq ,Show)

The robot frame is colored (the robots are painted) and has a strength which
determines the amount of weight that the robot can carry in its inventory.

data Frame = F {color :: Color , strength :: Int } deriving (Eq ,Show)

The color is not necessarily unique, but may help robots distinguish other
robots. In this report, colors are represented as a simple small enumeration.
Other implementations are welcome to adopt a more fully fledged datatype for
representing robot colors.

data Color = Red | Orange | Yellow | Green | Blue | Violet | Black |White
deriving (Eq ,Ord ,Enum,Show)

The frame strength limits the total weight of items that may be carried in
the robot’s inventory. Every item has a weight, and the combined weight of all
carried items must not exceed the frame’s strength.

canLift :: Robot → Item → Bool
canLift r item = strength (frame r) > sum (weight <$> item : inventory r)

Robots also contain a register machine, which consists of a processor and a
memory. The processor is defined purely by the number of instructions it can
compute per Botworld step, and the memory is simply a list of registers.

newtype Processor = P {speed :: Int } deriving (Eq ,Show)
type Memory = [Register]

In this report, the register machines use a very simple instruction set which
we call the constree language. A full implementation can be found in Ap-
pendix B. However, when modelling concrete decision problems in Botworld,
we may choose to replace this simple language by something easier to use. (In
particular, many robot programs will need to reason about Botworld’s laws.
Encoding Botworld into the constree language is no trivial task.)

8

2.2 Items

Botworld squares contain items which may be manipulated by the robots. Items
include robot parts which can be used to construct robots, shields which can be
used to protect a robot from aggressors, and various types of cargo, a catch-all
term for items that have no functional significance inside Botworld but that
players try to collect to increase their score.

At the end of a Botworld game, a player is scored on the value of all items
carried by robots in the player’s home square. The value of different items varies
from game to game; see Section 2.5 for details.

Robot parts are either processors, registers, or frames.

data Item
= Cargo {cargoType :: Int , cargoWeight :: Int }
| ProcessorPart Processor
| RegisterPart Register
| FramePart Frame
| InspectShield
| DestroyShield
deriving (Eq ,Show)

Every item has a weight. Shields, registers and processors are light. Frames
are heavy. The weight of cargo is variable.

weight :: Item → Int
weight (Cargo w) = w
weight (FramePart) = 100
weight = 1

Robots can construct other robots from component parts. Specifically, a
robot may be constructed from one frame, one processor, and any number of
registers.1

construct :: [Item]→ Maybe Robot
construct parts = do

FramePart f ← singleton $ filter isFrame parts
ProcessorPart p ← singleton $ filter isProcessor parts
let robot = Robot f [] p [r | RegisterPart r ← parts]
if all isPart parts then Just robot else Nothing

Robots may also shatter robots into their component parts. As you might
imagine, each robot is deconstructed into a frame, a processor, and a handful
of registers.2

1The following code introduces the helper function singleton :: [a] → Maybe a which
returns Just x when given [x] and Nothing otherwise, as well as the helper functions
isFrame, isProcessor , isPart :: Item → Bool , all of which are defined in Appendix C.

2The following code introduces the function forceR :: Constree → Register → Register ,
which sets the contents of a register. It is defined in Appendix B.

9

shatter :: Robot → [Item]
shatter r = FramePart (frame r) : ProcessorPart (processor r) : rparts where

rparts = RegisterPart ◦ forceR Nil <$>memory r

2.3 Commands and actions

Robot machines have a special output register which is used to determine the
action taken by the robot in the step. Robot machines are run at the end of
each Botworld step, and are expected to leave a command in the output register.
This command determines the behavior of the robot in the following step.

Available commands are:

• Move, for moving around the grid.
• Lift , for lifting items.
• Drop, for dropping items.
• Inspect , for reading the contents of another robot’s register machine.
• Destroy , for destroying robots.
• Build , for creating new robots.
• Pass, which has the robot do nothing.

Robots specify the items they want to manipulate or the robots they want
to target by giving the index of the target in the appropriate list. The Ints in
Lift and Build commands index into the square’s item list. The Ints in Inspect
and Destroy commands index into the square’s robot list. The Ints in Drop
commands index into the inventory of the robot which gave the command.

data Command
= Move Direction
| Lift {itemIndex :: Int }
| Drop {inventoryIndex :: Int }
| Inspect {targetIndex :: Int }
| Destroy {victimIndex :: Int }
| Build {itemIndexList :: [Int], initialState :: Memory }
| Pass
deriving Show

Depending upon the state of the world, the robots may or may not actually
execute their chosen command. For instance, if the robot attempts to move into
a wall, the robot will fail. The actual actions that a robot may end up taking
are given below. Their meanings will be made explicit momentarily (though
you can guess most of them from the names).

data Action
= Created
| Passed
| MoveBlocked Direction

10

| MovedOut Direction
| MovedIn Direction
| CannotLift Int
| GrappledOver Int
| Lifted Int
| Dropped Int
| InspectTargetFled Int
| InspectBlocked Int
| Inspected Int Robot
| DestroyTargetFled Int
| DestroyBlocked Int
| Destroyed Int
| BuildInterrupted [Int]
| Built [Int] Robot
| Invalid
deriving (Eq ,Show)

2.4 The step function

Botworld cells are updated in two alternating phases. First, in the environment
phase, robot commands are read from each robot’s register machine’s output
register and these are used to affect the world. This generates an Event, which
describes the action that each robot performed and the way in which each item
was manipulated.

data Event = Event
{robotActions :: [(Robot ,Action)]
, untouchedItems :: [Item]
, droppedItems :: [Item]
, fallenItems :: [ItemCache]
} deriving Show

This data structure makes it easy for programs (which get to see the Event)
to differentiate beteween items that were untouched, items that were willingly
dropped, and items which fell from a destroyed robot. In the last category,
fallen robot parts are differentiated from fallen robot possessions.

data ItemCache = ItemCache
{components :: [Item]
, possessions :: [Item]
} deriving Show

When observing Botworld games, it is sometimes useful to hop directly from
Event to Event. For this, we define a convenience type.

type EventGrid = Grid (Maybe Event)

11

After the environment phase there is a computation phase, during which all
remaining robots have their register machine’s input register set (according to
the Event) and then run (according to the host robot’s processor). Each register
machine is expected to leave a command in the output register at the end of
the computation phase, for use in the next environment phase.

A single Botworld step thus consists of one environment phase followed by
one computation phase:

step :: (Square,Map Direction Cell)→ Square
step = computationPhase ◦ environmentPhase

We will now define the environment phase and the computaition phase in
turn.

The environment phase begins by determining what each robot would like
to do. We do this by reading from (and then zeroing out) the output register
of the robot’s register machine. This leaves us both with a list of robots (which
have had their machine’s output register zeroed out) and a corresponding list
of robot outputs.3

2.4.1 Environment Phase

environmentPhase :: (Square,Map Direction Cell)→ Event
environmentPhase (sq ,neighbors) = event where

(robots, intents) = unzip (takeOutput <$> robotsIn sq)

Notice that we read the robot’s output register at the beginning of each
Botworld step. (We run the robot register machines at the end of each step.)
This means that robots must be initialized with their first command in the
output register.

Resolving conflicts

Before we can compute the actions that are actually taken by each robot, we
need to compute some data that will help us identify failed actions.

Items may only be lifted or used to build robots if no other robot is
also validly lifting or using the item. In order to detect such conflicts, we
compute whether each individual item is contested, and store the result in a list
of items which corresponds by index to the cell’s item list.

contested :: [Bool]
contested = isContested <$>[0 . . pred $ length $ itemsIn sq] where

3The following code introduces the function takeOutput :: Decodable o ⇒ Robot →
(Robot ,Maybe o), defined in Appendix B.1, which reads a robot’s output register, decodes
the contents into a Haskell object, and clears the register.

12

We determine the indices of items that robots want to lift by looking at all
lift orders that the ordering robot could in fact carry out:4

isValidLift r i = maybe False (canLift r) (itemsIn sq !!? i)
allLifts = [i | (r , Just (Lift i))← zip robots intents, isValidLift r i]

We then determine the indices of items that robots want to use to build
other robots by looking at all build orders that actually do describe a robot:

isValidBuild = maybe False (isJust ◦ construct) ◦mapM (itemsIn sq !!?)
allBuilds = [is | Build is ← catMaybes intents, isValidBuild is]

We may then determine which items are in high demand, and generate our
item list with those items removed.

uses = allLifts ++ concat allBuilds
isContested i = i ∈ delete i uses

Robots may only be destroyed or inspected if they do not possess
adequate shields. Every attack (Destroy or Inspect command) targeting a
robot destroys one of the robot’s shields. So long as the robot possesses more
shields than attackers, the robot is not affected. However, if the robot is attacked
by more robots than it has shields, then all of its shields are destroyed and all
of the attacks succeed (in a wild frenzy, presumably).

To implement this behavior, we generate first a list corresponding by index
to the robot list which specifies the number of destroy or inspect attempts that
each robot receives in this step:

destroyAttempts :: [Int]
destroyAttempts = numAttempts <$>[0 . . pred $ length $ robotsIn sq] where

numAttempts i = length [n | Just (Destroy n)← intents,n ≡ i]

inspectAttempts :: [Int]
inspectAttempts = numAttempts <$>[0 . . pred $ length $ robotsIn sq] where

numAttempts i = length [n | Just (Inspect n)← intents,n ≡ i]

We then generate a list corresponding by index to the robot list which for
each robot determines whether that robot is adequately shielded (againts various
attacks) in this step5:

inspectShielded :: [Bool]
inspectShielded = zipWith isShielded [0 . .] robots where

isShielded i r = (inspectAttempts !! i) 6 numInspectShields r

4The following code introduces the helper function (!!?) :: [a] → Int → Maybe a, used to
safely index into lists, which is defined in Appendix C.

5This function introduces the helper functions isInspectShield , isDestroyShield :: Item →
Bool defined in Appendix C.

13

numInspectShields = length ◦ filter isInspectShield ◦ inventory

destroyShielded :: [Bool]
destroyShielded = zipWith isShielded [0 . .] robots where

isShielded i r = (destroyAttempts !! i) 6 numDestroyShields r
numDestroyShields = length ◦ filter isDestroyShield ◦ inventory

Any robot that exits the square in this step cannot be attacked in this
step. Moving robots evade their pursuers, and the shields of moving robots
are not destroyed. We define a function that determines whether a robot has
successfully fled. This function makes use of the fact that movement commands
into non-wall cells always succeed.

fled :: Maybe Command → Bool
fled (Just (Move dir)) = isJust $ join $ lookup dir neighbors
fled = False

Determining actions

We may now map robot commands onto the actions that the robots actually
take. We begin by noting that any robot with invalid output takes the Invalid
action.

perform :: Robot → Maybe Command → Action
perform robot = maybe Invalid act where

As we have seen, Move commands fail only when the robot attempts to move
into a wall cell.

act :: Command → Action
act (Move dir) = (if isJust cell then MovedOut else MoveBlocked) dir

where cell = join $ lookup dir neighbors

Lift commands can fail in three different ways:

1. If the item index is out of range, the command is invalid.
2. If the robot lacks the strength to hold the item, the lift fails.
3. If the item is contested, then multiple robots have attempted to use the

same item.

Otherwise, the lift succeeds.

act (Lift i) = maybe Invalid tryLift $ itemsIn sq !!? i where
tryLift item
| ¬ $ canLift robot item = CannotLift i
| contested !! i = GrappledOver i
| otherwise = Lifted i

14

Drop commands always succeed so long as the robot actually possesses the
item they attempt to drop.

act (Drop i) = maybe Invalid (const $ Dropped i) (inventory robot !!? i)

Inspect commands, like Lift commands, may fail in three different ways:

1. If the specified robot does not exist, the command is invalid.
2. If the specified robot moved away, the inspection fails.
3. If the specified robot had sufficient shields this step, the inspection is

blocked.

Otherwise, the inspection succeeds.

act (Inspect i) = maybe Invalid tryInspect (robots !!? i) where
tryInspect target
| fled (intents !! i) = InspectTargetFled i
| inspectShielded !! i = InspectBlocked i
| otherwise = Inspected i target

Destroy commands are similar to inspect commands: if the given index
actually specifies a victim in the robot list, and the victim is not moving away,
and the victim is not adequately shielded, then the victim is destroyed.

Robots can destroy themselves. Programs should be careful to avoid unin-
tentional self-destruction.

act (Destroy i) = maybe Invalid tryDestroy (robots !!? i) where
tryDestroy
| fled (intents !! i) = DestroyTargetFled i
| destroyShielded !! i = DestroyBlocked i
| otherwise = Destroyed i

Build commands must also pass three checks in order to succeed:6

1. All of the specified indices must specify actual items.
2. None of the specified items may be contested.
3. The items must together specify a robot.

act (Build is m) = maybe Invalid tryBuild $ mapM (itemsIn sq !!?) is where
tryBuild = maybe Invalid checkBuild ◦ construct
checkBuild blueprint
| any (contested !!) is = BuildInterrupted is
| otherwise = Built is $ setState m blueprint

Pass commands always succeed.

6The following code introduces the function setState ::Memory → Robot → Robot , defined
in Appendix B.1.

15

act Pass = Passed

With the perform function in hand it is trivial to compute the actions actu-
ally executed by the robots in the square:

localActions :: [Action]
localActions = zipWith perform robots intents

Generating the event

With the local actions in hand, we can start updating the robots and items. We
begin by computing which items were unaffected and which items were willingly
dropped.7

untouched :: [Item]
untouched = removeIndices (lifts ++ builds) (itemsIn sq) where

lifts = [i | Lifted i ← localActions]
builds = concat [is | Built is ← localActions]

dropped :: [Item]
dropped = [item r i | (r ,Dropped i)← zip robots localActions] where

item r i = inventory r !! i

We cannot yet compute the new item state entirely, as doing so requires
knowledge of which robots were destroyed. The items and parts of destroyed
robots will fall into the square, but only after the destroyed robot carries out
their action.

We now turn to robots that began in the square, and update their inventories.
(Note that because the inventories of moving robots cannot change, we do not
need to update the inventories of robots entering the square.)

Robot inventories are updated whenever the robot executes a Lift action,
executes a Drop action, or experiences an attack (in which case shields may be
destroyed.)8

updateInventory :: Int → Action → Robot → Robot
updateInventory i a r = let stale = inventory r in case a of

MovedOut → r
Lifted n → r {inventory = (itemsIn sq !! n) : defend stale }
Dropped n → r {inventory = defend $ removeIndices [n] stale }
→ r {inventory = defend stale }

where
defend = breakDestroyShields ◦ breakInspectShields
breakDestroyShields = dropN (destroyAttempts !! i) isDestroyShield
breakInspectShields = dropN (inspectAttempts !! i) isInspectShield

7The following code introduces the helper function removeIndices :: [Int] → [a] → [a]
which is defined in Appendix C.

8The following code introduces the helper function dropN ::Int → (a → Bool) → [a] → [a],
which drops the first n items matching the given predicate. It is defined in Appendix C.

16

We use this function to update the inventories of all robots that were origi-
nally in this square. Notice that the inventories of destroyed robots are updated
as well: destroyed robots get to perform their actions before they are destroyed.

veterans :: [Robot]
veterans = zipWith3 updateInventory [0 . .] localActions robots

Now that we know the updated states of the robots, we can compute what
items fall from the destroyed robots.

fallen = [cache r | (i , r)← zip [0 . .] veterans, died i] where
cache r = ItemCache (shatter r) (inventory r)
died n = n ∈ [i | Destroyed i ← localActions]

Computing the updated robot states is somewhat more difficult. Before we
can, we must identify which robots enter this square from other squares. We
compute this by looking at the intents of the robots in neighboring squares.
Remember that move commands always succeed if the robot is moving into a
non-wall square. Thus, all robots in neighboring squares which intend to move
into this square will successfully move into this square.

incomingFrom :: Direction → Cell → [Robot]
incomingFrom dir neighbor = mapMaybe movingThisWay cmds where

cmds = maybe [] (fmap takeOutput ◦ robotsIn) neighbor
movingThisWay (robot , Just (Move dir ′))
| dir ≡ opposite dir ′ = Just robot

movingThisWay = Nothing

We compute both a list of entering robots and a corresponding list of the
directions which those robots entered from.

immigrations = assocs $ mapWithKey incomingFrom neighbors
(travelers, origins) = unzip [(r , d) | (d , rs)← immigrations, r ← rs]

We also determine the list of robots that have been created in this timestep:

children = [r | Built r ← localActions]

This allows us to compute a list of all robots that either started in the square,
entered the square, or were created in the square in this step. Note that this list
also contains robots that exited the square and robots that have been destroyed.
This is intentional: the list of all robots (and what happened to them) is sent
to each remaining robot as program input.

allRobots :: [Robot]
allRobots = veterans ++ travelers ++ children

We nest generate the corresponding list of actions.

17

allActions :: [Action]
allActions = localActions ++ travelerActions ++ childActions where

travelerActions = fmap MovedIn origins
childActions = replicate (length children) Created

We have now computed the updated robots (and the corresponding actions)
and the updated items (in three groups: untouched items, dropped items, and
fallen items). This is all of the data that we need to complete the environment
phase of the step function:

event = Event (zip allRobots allActions) untouched dropped fallen

2.4.2 Computaiton phase

We now proceed to the computation phase of the step function. This function
turns an Event into an updated Square, by generating a new robot list and a
new item list. The new robot list is generated by removing robots that exited
or were destroyed, and running the register machines on the remaining robots.
The new item list is generated by simply flattening the untouched, dropped,
and fallen item lists into a single list.

computationPhase :: Event → Square
computationPhase = Square <$>newRobotList <∗>newItemList where

newRobotList :: Event → [Robot]

The new robot list is generated by running the register machines on each
remaining robot after updating that robot’s register machine’s input register.9

newRobotList event = runMachine <$> prepped where
prepped = [setInput r (createInput i a) | (i , r , a)← triples]
triples = [(i , r , a) | (i , r , a)← zip3 [0 . .] robots actions, isHere i a]
isHere i a = ¬ (isExit a ∨ i ∈ [x | Destroyed x ← actions])
(robots, actions) = unzip $ robotActions event

Before being run, each robot receives three inputs:

1. The host robot’s index in the robot/action list.
2. The Event object.
3. Some private input.

This data is encoded into the constree language, and the encoding is lossy:
the contents of each robot’s register machine are not included in the robot list,
and robots cannot distinguish between Passed and Invalid actions taken by
other robots. Also, the results of an Inspect command are only visible to the

9The following code introduces the function setInput ::Encodable i ⇒ Robot → i → Robot ,
defined in Appendix B.1, which encodes a Haskell object into Constree and sets the robot’s
input register accordingly.

18

inspecting robot. This data-hiding is implemented by the constree encoding
code; see Appendix B.2 for details.

The following function creates the input object for each robot (if that robot
remains in the square and survived):

createInput :: Int → Action → (Int ,Event ,Constree)
createInput n a = (n, event , private a)

A robot’s private input either contains the results of a successful Inspect
command or lets a robot know when its previous command was Invalid . Oth-
erwise, the private input is empty.

private :: Action → Constree
private (Inspected r) = encode (processor r , length $ memory r ,memory r)
private Invalid = encode True
private = Nil

Robot register machines are run using the runFor :: Int → Memory →
Either Error Memory Constree function defined in Appendix B. Notice that a
robot with invalid code has all of its registers cleared.10

runMachine :: Robot → Robot
runMachine robot = case runFor (speed $ processor robot) (memory robot) of

Right memory ′ → robot {memory = memory ′}
Left → robot {memory = forceR Nil <$>memory robot }

Finally, we compute the new item list by simply discarding the additional
item structure that was kept around for the purposes of robot input.

newItemList :: Event → [Item]
newItemList event = untouched ++ dropped ++ fallen where

untouched = untouchedItems event
dropped = droppedItems event
fallen = concat [xs ++ ys | ItemCache xs ys ← fallenItems event]

This completes the computation phase.

2.4.3 Summary

This fully specifies the step function for Botworld cells. To summarize:

Environment phase

1. Robot machine output registers are read to determine robot intents.
2. Robot actions are computed from robot intents.

10The following code introduces the function forceR :: Constree → Register → Register
which sets the contents of a constree register, defined in APpendix B.

19

3. Lifted and dropped items are computed.
4. Robot inventories are updated.
5. Fallen items are computed.
6. Incoming robots are computed.
7. Constructed robots are added.

Computation phase

1. Destroyed and exited robots are removed.
2. Register machine input registers are set.
3. Register machines are executed.
4. The item list is flattened.

As noted previously, machine programs are expected to leave a command in
the output register for use in the next step.

2.5 Games

Botworld games can vary widely. A simple game that Botworld lends itself to
easily is a knapsack game, in which players attempt to maximize the value of
the items collected by robots which they control. (This is an NP-hard problem
in general.)

Remember that robots are not players: a player may only be able to specify
the initial program for a single robot, but players may well attempt to acquire
whole fleets of robots with code distributed throughout.

As such, Botworld games are not scored according to the possessions of any
particular robot. Rather, each player is assigned a home square, and the score
of a player is computed according to the items possessed by all robots in the
player’s home square at the end of the game. (We imagine that the robots
are airlifted out and their items are extracted for delivery to the player.) Each
player may have their own assignment of values to items.

data Player = Player
{values :: Item → Int
, home :: Position
}

Because the values of items can vary by player, we need to know the player
under consideration in order to compute the total value of a robot’s inventory.

points :: Player → Robot → Int
points player r = sum (values player <$> inventory r)

A player’s score at the end of a Botworld game is the sum of the values of
all items held by all robots in that player’s home square at the end of the game.

20

score :: Botworld → Player → Int
score world player = sum (points player <$> robots) where

robots = maybe [] robotsIn $ at world $ home player

Most players use a very simple value function which assigns value only to
cargo items in direct correspondence with the cargo type. For convenience, that
value function is defined below.

standardValuer :: Item → Int
standardValuer (Cargo t) = t
standardValuer = 0

Because Botworld steps begin with an environment phase, robots must be
pre-loaded with a command to be executed in the initial step. Some games
find this inconvenient, and prefer to begin with a robot phase instead of an
environment phase. Such games may begin with a creation phase instead of an
environment phase. The creation phase generates an event in which all robots
are marked Created and take no actions. Such games may begin with a creation
phase followed by alternating computation and environment phases.

creationPhase :: Square → Event
creationPhase (Square rs is) = Event (zip rs $ repeat Created) is [] []

We do not provide any example games in this report. Some example games
are forthcoming.

21

Chapter 3

Concluding notes

Botworld allows us to study self-modifying agents in a world where the agents
are embedded within the environment. Botworld admits a wide variety of games,
including games with Newcomb-like problems and games with NP-hard tasks.

Botworld provides a very concrete environment in which to envision agents.
This has proved quite useful to us when considering obstacles of self-reference:
the concrete model often makes it easier to envision difficulties and probe edge
cases.

Furthermore, Botworld allows us to constructively illustrate issues that we
come across by providing a concrete game in which the issue presents itself. This
can often help make the abstract problems of self-reference easier to visualize.

Forthcoming publications will illustrate some of the work that we’ve done
based on Botworld.

22

Appendix A

Grid Manipulation

This report uses a quick-and-dirty Grid implementation wherein a grid is rep-
resented by a flat list of cells. This grid implementation specifies a wraparound
grid (Pac-Man style), which means that every position is valid.

Botworld is not tied to this particular grid implementation: non-wrapping
grids, infinite grids, or even non-Euclidean grids could house Botworld games.
We require only that squares agree on who their neighbors are: if square A is
north of square B, then square B must be south of square A.

type Dimensions = (Int , Int)
type Position = (Int , Int)

data Grid a = Grid
{dimensions :: Dimensions
, cells :: [a]
} deriving Eq

instance Functor Grid where
fmap f g = g {cells = fmap f $ cells g }

locate :: Dimensions → Position → Int
locate (x , y) (i , j) = (j ‘mod ‘ y) ∗ x + (i ‘mod ‘ x)

indices :: Grid a → [Position]
indices (Grid (x , y)) = [(i , j) | j ← [0 . . pred y], i ← [0 . . pred x]]

at :: Grid a → Position → a
at (Grid dim xs) p = xs !! locate dim p

change :: (a → a)→ Position → Grid a → Grid a
change f p (Grid dim as) = Grid dim $ alter (locate dim p) f as

The following series of functions are useful for creating grids. The first
creates a grid from a generator function:

generate :: Dimensions → (Position → a)→ Grid a
generate dim gen = let g = Grid dim (gen <$> indices g) in g

23

The next generates a grid from a list, padded with Nothings as neccessary:

fillGrid :: Dimensions → [a]→ Grid (Maybe a)
fillGrid dim xs = generate dim (λpos → xs !!? locate dim pos)

The final three are useful for creating a grid from a list where only one
dimension is known: for example, creating a grid of width 3 from a list, using
as few rows as possible, padded as necessary.

cutGrid :: (Int → Dimensions)→ [a]→ Grid (Maybe a)
cutGrid cut xs = generate dim get where

get pos = xs !!? locate dim pos
dim = cut $ length xs

vGrid :: Int → [a]→ Grid (Maybe a)
vGrid maxw = cutGrid (λlen → (min maxw len, (len + pred maxw) ‘div ‘ maxw))

hGrid :: Int → [a]→ Grid (Maybe a)
hGrid maxh = cutGrid (λlen → ((len + pred maxh) ‘div ‘ maxh,min maxh len))

A.1 Directions

Each square has eight neighbors (or up to eight neighbors, in finite non-wrapping
grids). Each neighbor lies in one of eight directions, termed according to the
cardinal directions. We now formally name those directions and specify how
directions alter grid positions.

data Direction = N | NE | E | SE | S | SW |W | NW
deriving (Eq ,Ord ,Enum,Show)

opposite :: Direction → Direction
opposite d = iterate (if d < S then succ else pred) d !! 4

towards :: Direction → Position → Position
towards d (x , y) = (x + dx , y + dy) where

dx = [0, 1, 1, 1, 0,−1,−1,−1] !! fromEnum d
dy = [−1,−1, 0, 1, 1, 1, 0,−1] !! fromEnum d

A.2 Botworld Grids

Next, we define functions that update an entire Botworld grid. The first two
functions run a single phase of the two-phase step function on an entire grid:

runCreation :: Botworld → EventGrid
runCreation = fmap (fmap creationPhase)

runEnvironment :: Botworld → EventGrid
runEnvironment bw = bw {cells = doEnv <$> indices bw } where

24

doEnv pos = environmentPhase ◦ withNeighbors pos <$> at bw pos
withNeighbors pos sq = (sq , fromList $ walk pos <$>[N . .])
walk pos dir = (dir , at bw $ towards dir pos)

runRobots :: EventGrid → Botworld
runRobots = fmap (fmap computationPhase)

The next updates an entire Botworld grid by one step:

update :: Botworld → Botworld
update = runRobots ◦ runEnvironment

A final convenience function updates from one event directly to the next.

update ′ :: EventGrid → EventGrid
update ′ = runEnvironment ◦ runRobots

25

Appendix B

Constree Language

Robots contain register machines, which run a little Turing complete language
which we call the constree language. There is only one data structure in constree,
which is (unsurprisingly) the cons tree:

data Constree = Cons Constree Constree | Nil deriving (Eq ,Show)

Constrees are stored in registers, each of which has a memory limit.

data Register = R { limit :: Int , contents :: Constree } deriving (Eq ,Show)

Each tree has a size determined by the number of conses in the tree. It may
be more efficient for the size of the tree to be encoded directly into the Cons,
but we are optimizing for clarity over speed, so we simply compute the size
whenever it is needed.

A tree can only be placed in a register if the size of the tree does not exceed
the size limit on the register.

size :: Constree → Int
size Nil = 0
size (Cons t1 t2) = succ $ size t1 + size t2

Constrees are trimmed from the right. This is important only when you try
to shove a constree into a register where the constree does not fit.

trim :: Int → Constree → Constree
trim Nil = Nil
trim x t@(Cons front back)
| size t 6 x = t
| size front < x = Cons front $ trim (x − succ (size front)) back
| otherwise = Nil

There are two ways to place a tree into a register: you can force the tree into
the register (in which case the register gets set to nil if the tree does not fit), or

26

you can fit the tree into the register (in which case the tree gets trimmed if it
does not fit).

forceR :: Constree → Register → Register
forceR t r = if size t 6 limit r then r {contents = t } else r {contents = Nil }
fitR :: Encodable i ⇒ i → Register → Register
fitR i r = forceR (trim (limit r) (encode i)) r

The constree language has only four instructions:

1. One to make the contents of a register nil.
2. One to cons two registers together into a third register.
3. One to deconstruct a register into two other registers.
4. One to conditionally copy one register into another register, but only if

the test register is nil.

data Instruction
= Nilify Int
| Construct Int Int Int
| Deconstruct Int Int Int
| CopyIfNil Int Int Int
deriving (Eq ,Show)

A machine is simply a list of such registers. The first register is the program
register, the second is the input register, the third is the output register, and
the rest are workspace registers.

The following code implements the above construction set on a constree
register machine:

data Error
= BadInstruction Constree
| NoSuchRegister Int
| DeconstructNil Int
| OutOfMemory Int
| InvalidOutput
deriving (Eq ,Show)

getTree :: Int → Memory → Either Error Constree
getTree i m = maybe (Left $ NoSuchRegister i) (Right ◦ contents) (m !!? i)

setTree :: Constree → Int → Memory → Either Error Memory
setTree t i m = maybe (Left $ NoSuchRegister i) go (m !!? i) where

go r = if size t > limit r then Left $ OutOfMemory i else
Right $ alter i (const r {contents = t }) m

execute :: Instruction → Memory → Either Error Memory
execute instruction m = case instruction of

27

Nilify tgt → setTree Nil tgt m
Construct fnt bck tgt → do

front ← getTree fnt m
back ← getTree bck m
setTree (Cons front back) tgt m

Deconstruct src fnt bck → case getTree src m of
Left err → Left err
Right Nil → Left $ DeconstructNil src
Right (Cons front back)→ setTree front fnt m >>= setTree back bck

CopyIfNil tst src tgt → case getTree tst m of
Left err → Left err
Right Nil → getTree src m >>= (λt → setTree t tgt m)
Right → Right m

runFor :: Int → Memory → Either Error Memory
runFor 0 m = Right m
runFor [] = Right []
runFor (r : rs) | contents r ≡ Nil = Right $ r : rs
runFor n (r : rs) = tick >>= runFor (pred n) where

tick = maybe badInstruction doInstruction (decode $ contents r)
badInstruction = Left $ BadInstruction $ contents r
doInstruction (i , is) = execute i (r {contents = is } : rs)

B.1 Robot/machine interactions

Aside from executing robot machines, there are three ways that Botworld changes
a robot’s register machines:

A robot may have its machine written. This happens whenever the ma-
chine is constructed.

setState :: Memory → Robot → Robot
setState m robot = robot {memory = fitted } where

fitted = zipWith (forceR ◦ contents) m (memory robot) ++ padding
padding = forceR Nil <$> drop (length m) (memory robot)

A robot may have its output register read. Whenever the output register
is read, it is set to Nil thereafter.

Programs may use this fact to implement a wait-loop that waits until output
is read before proceeding: after output is read, input will be updated before
the next instruction is executed, so machines waiting for a Nil output can be
confident that when the output register becomes Nil there will be new input in
the input register.

A robot’s output register is read at the beginning of each tick.

28

takeOutput :: Decodable o ⇒ Robot → (Robot ,Maybe o)
takeOutput robot = maybe (robot ,Nothing) go (m !!? 2) where

go o = (robot {memory = alter 2 (forceR Nil) m }, decode $ contents o)
m = memory robot

A robot may have its machine input register set. This happens just
before the machine is executed in every Botworld step.

setInput :: Encodable i ⇒ Robot → i → Robot
setInput robot i = robot {memory = set1 } where

set1 = alter 1 (fitR i) (memory robot)

B.2 Encoding and Decoding

The following section specifies how Haskell data structures are encoded into
constrees and decoded from constrees. It is largely mechanical, with a few
exceptions noted inline.

class Encodable t where
encode :: t → Constree

class Decodable t where
decode :: Constree → Maybe t

instance Encodable Constree where
encode = id

instance Decodable Constree where
decode = Just

instance Encodable t ⇒ Encodable (Maybe t) where
encode = maybe Nil (Cons Nil ◦ encode)

instance Decodable t ⇒ Decodable (Maybe t) where
decode Nil = Just Nothing
decode (Cons Nil x) = Just <$> decode x
decode = Nothing

instance Encodable t ⇒ Encodable [t] where
encode = foldr (Cons ◦ encode) Nil

instance Decodable t ⇒ Decodable [t] where
decode Nil = Just []
decode (Cons t1 t2) = (:)<$> decode t1 <∗> decode t2

Lisp programmers may consider it more parsimonious to encode tuples like
lists, with a Nil at the end. There is some sleight of hand going on here, however:
machine inputs are encoded tuples, and the inputs may sometimes need to be
trimmed to fit into a register. If a robot has executed an Inspect command, then

29

the entire contents of the inspected robot will be dumped into the inspector’s
input register. In many cases, the entire memory of the target robot is not likely
to fit into the input register of the inspector. In such cases, we would like as
many full encoded registers to be fit into the input as possible.

Because cons trees are trimmed from the right, we get this behavior for free
if we forgo the terminal Nil when encoding tuple objects. With this implemen-
tation, the memory of the inspected robot (which is a list) will be the rightmost
item in the cons tree, and if it does not fit, the registers will be lopped off one
at a time. (By contrast, if we Nil-terminated tuple encodings and the machine
did not fit, then the entire machine would be trimmed.)

instance (Encodable a,Encodable b)⇒ Encodable (a, b) where
encode (a, b) = Cons (encode a) (encode b)

instance (Decodable a,Decodable b)⇒ Decodable (a, b) where
decode (Cons a b) = (,)<$> decode a <∗> decode b
decode Nil = Nothing

instance (Encodable a,Encodable b,Encodable c)⇒ Encodable (a, b, c) where
encode (a, b, c) = encode (a, (b, c))

instance (Decodable a,Decodable b,Decodable c)⇒ Decodable (a, b, c) where
decode = fmap f ◦ decode where f (a, (b, c)) = (a, b, c)

instance (Encodable a,Encodable b,Encodable c,Encodable d)⇒
Encodable (a, b, c, d) where
encode (a, b, c, d) = encode (a, (b, c, d))

instance (Decodable a,Decodable b,Decodable c,Decodable d)⇒
Decodable (a, b, c, d) where
decode = fmap f ◦ decode where f (a, (b, c, d)) = (a, b, c, d)

instance (Encodable a,Encodable b,Encodable c,Encodable d ,Encodable e)⇒
Encodable (a, b, c, d , e) where
encode (a, b, c, d , e) = encode (a, (b, c, d , e))

instance (Decodable a,Decodable b,Decodable c,Decodable d ,Decodable e)⇒
Decodable (a, b, c, d , e) where
decode = fmap f ◦ decode where f (a, (b, c, d , e)) = (a, b, c, d , e)

instance Encodable Bool where
encode False = Nil
encode True = Cons Nil Nil

instance Decodable Bool where
decode Nil = Just False
decode (Cons Nil Nil) = Just True
decode = Nothing

The special token Cons Nil (Cons Nil Nil) (which cannot appear as an item
in an encoded list of Bools) is allowed to appear at the beginning of an encoded
Int , in which case it denotes a negative sign.

instance Encodable Int where

30

encode n
| n < 0 = Cons (Cons Nil (Cons Nil Nil)) (encode $ negate n)
| otherwise = encode $ bits n
where

bits 0 = []
bits x = let (q , r) = quotRem x 2 in (r ≡ 1) : bits q

instance Decodable Int where
decode (Cons (Cons Nil (Cons Nil Nil)) n) = negate <$> decode n
decode t = decode t >>= unbits where

unbits [] = Just 0
unbits [False] = Nothing
unbits (x : xs) = (λy → (if x then 1 else 0) + 2 ∗ y)<$> unbits xs

instance Encodable Instruction where
encode instruction = case instruction of

Nilify tgt → encode (0 :: Int , tgt)
Construct fnt bck tgt → encode (1 :: Int , (fnt , bck , tgt))
Deconstruct src fnt bck → encode (2 :: Int , (src, fnt , bck))
CopyIfNil tst src tgt → encode (3 :: Int , (tst , src, tgt))

instance Decodable Instruction where
decode t = case decode t :: Maybe (Int ,Constree) of

Just (0, arg) → Nilify <$> decode arg
Just (1, args)→ uncurry3 Construct <$> decode args
Just (2, args)→ uncurry3 Deconstruct <$> decode args
Just (3, args)→ uncurry3 CopyIfNil <$> decode args

→ Nothing
where uncurry3 f (a, b, c) = f a b c

instance Encodable Register where
encode r = encode (limit r , contents r)

instance Decodable Register where
decode = fmap (uncurry R) ◦ decode

instance Encodable Color where
encode = encode ◦ fromEnum

instance Decodable Color where
decode t = ([Red . .]!!?) =<< decode t

instance Encodable Frame where
encode (F c s) = encode (c, s)

instance Decodable Frame where
decode = fmap (uncurry F) ◦ decode

instance Encodable Processor where
encode (P s) = encode s

instance Decodable Processor where
decode = fmap P ◦ decode

instance Encodable Item where

31

encode (Cargo t w) = encode (0 :: Int , t ,w)
encode (RegisterPart r) = encode (1 :: Int , r)
encode (ProcessorPart p) = encode (2 :: Int , p)
encode (FramePart f) = encode (3 :: Int , f)
encode DestroyShield = encode (4 :: Int ,Nil)
encode InspectShield = encode (5 :: Int ,Nil)

instance Decodable Item where
decode t = case decode t :: Maybe (Int ,Constree) of

Just (0, args)→ uncurry Cargo <$> decode args
Just (1, args)→ RegisterPart <$> decode args
Just (2, args)→ ProcessorPart <$> decode args
Just (3, args)→ FramePart <$> decode args
Just (4,Nil) → Just DestroyShield
Just (5,Nil) → Just InspectShield

→ Nothing

instance Encodable Direction where
encode = encode ◦ fromEnum

instance Decodable Direction where
decode t = ([N . .]!!?) =<< decode t

Note that only the robot’s frame and inventory are encoded into constree.
The processor and memory are omitted, as these are not visible in the machine
inputs.

instance Encodable Robot where
encode (Robot f i) = encode (f , i)

instance Encodable Command where
encode (Move d) = encode (0 :: Int , head $ elemIndices d [N . .])
encode (Lift i) = encode (1 :: Int , i)
encode (Drop i) = encode (2 :: Int , i)
encode (Inspect i) = encode (3 :: Int , i)
encode (Destroy i) = encode (4 :: Int , i)
encode (Build is m) = encode (5 :: Int , is,m)
encode Pass = encode (6 :: Int ,Nil)

instance Decodable Command where
decode t = case decode t :: Maybe (Int ,Constree) of

Just (0, d) → Move <$>(([N . .]!!?) =<< decode d)
Just (1, i) → Lift <$> decode i
Just (2, i) → Drop <$> decode i
Just (3, i) → Inspect <$> decode i
Just (4, i) → Destroy <$> decode i
Just (5, x) → uncurry Build <$> decode x
Just (6,Nil)→ Just Pass

→ Nothing

Note that Passed actions and Invalid actions are encoded identically: robots

32

cannot distinguish these actions. Note also that Inspected actions do not encode
the result of the inspection.

instance Encodable Action where
encode a = case a of

Passed → encode (0 :: Int ,Nil)
Invalid → encode (0 :: Int ,Nil)
Created → encode (1 :: Int ,Nil)
MoveBlocked d → encode (2 :: Int , direction d)
MovedOut d → encode (3 :: Int , direction d)
MovedIn d → encode (4 :: Int , direction d)
CannotLift i → encode (5 :: Int , i)
GrappledOver i → encode (6 :: Int , i)
Lifted i → encode (7 :: Int , i)
Dropped i → encode (8 :: Int , i)
InspectTargetFled i → encode (9 :: Int , i)
InspectBlocked i → encode (10 :: Int , i)
Inspected i → encode (11 :: Int , i)
DestroyTargetFled i → encode (12 :: Int , i)
DestroyBlocked i → encode (13 :: Int , i)
Destroyed i → encode (14 :: Int , i)
Built is → encode (15 :: Int , is)
BuildInterrupted is → encode (16 :: Int , is)
where direction d = head $ elemIndices d [N . .]

instance Encodable ItemCache where
encode (ItemCache pt ps) = encode (pt , ps)

instance Decodable ItemCache where
decode = fmap (uncurry ItemCache) ◦ decode

instance Encodable Event where
encode (Event ras u d f) = encode (rs, as, (u, d , f)) where (rs, as) = unzip ras

33

Appendix C

Helper Functions

This section contains simple helper functions used to implement the Botworld
step function. The first few are used to distinguish different types of items and
actions:

isPart :: Item → Bool
isPart (RegisterPart) = True
isPart item = isProcessor item ∨ isFrame item

isProcessor :: Item → Bool
isProcessor (ProcessorPart) = True
isProcessor = False

isFrame :: Item → Bool
isFrame (FramePart) = True
isFrame = False

isInspectShield :: Item → Bool
isInspectShield InspectShield = True
isInspectShield = False

isDestroyShield :: Item → Bool
isDestroyShield DestroyShield = True
isDestroyShield = False

isExit :: Action → Bool
isExit (MovedOut) = True
isExit = False

The rest are generic functions that assist with list manipulation.
One to extract a single item from a list (or fail if the list has many items):

singleton :: [a]→ Maybe a
singleton [x] = Just x
singleton = Nothing

One to safely access items in a list at a given index:

34

(!!?) :: [a]→ Int → Maybe a
[] !!? = Nothing
(x :) !!? 0 = Just x
(: xs) !!? n = xs !!? pred n

One to safely alter a specific item in a list:

alter :: Int → (a → a)→ [a]→ [a]
alter i f xs = maybe xs go (xs !!? i) where

go x = take i xs ++ (f x : drop (succ i) xs)

One to remove a specific set of indices from a list:

removeIndices :: [Int]→ [a]→ [a]
removeIndices = flip $ foldr remove where

remove :: Int → [a]→ [a]
remove i xs = take i xs ++ drop (succ i) xs

And one to selectively drop the first n items that match the given predicate.

dropN :: Int → (a → Bool)→ [a]→ [a]
dropN 0 xs = xs
dropN n p (x : xs) = if p x then dropN (pred n) p xs else x : dropN n p xs
dropN [] = []

35

Bibliography

[1] Alex Altair. A comparison of decision algorithms on newcomblike problems.
2013.

[2] Martin Gardner. Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game ”Life”. Scientific American, (223):120–123,
October 1970.

[3] Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to
attack a virtual machine. In In IEEE Symposium on Security and Privacy,
pages 154–165, 2003.

[4] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Springer, Berlin, 2005.

[5] Laurent Orseau and Mark B. Ring. Space-time embedded intelligence. In
Joscha Bach, Ben Goertzel, and Matthew Iklé, editors, AGI, volume 7716
of Lecture Notes in Computer Science, pages 209–218. Springer, 2012.

[6] Vladimir Slepnev. A model of UDT with a halting oracle. http:

//lesswrong.com/lw/8wc/a_model_of_udt_with_a_halting_oracle/,
2011.

[7] Vladimir Slepnev. A model of UDT without proof limits. http://

lesswrong.com/lw/b0e/a_model_of_udt_without_proof_limits/, 2012.

[8] Wikipedia. Markov decision process — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Markov_decision_

process&oldid=589500076, 2014. [Online; accessed 10-April-2014].

[9] Eliezer Yudkowsky and Marcello Herreshoff. Tiling agents for self-modifying
AI, and the Löbian obstacle. 2013.

36

http://lesswrong.com/lw/8wc/a_model_of_udt_with_a_halting_oracle/
http://lesswrong.com/lw/8wc/a_model_of_udt_with_a_halting_oracle/
http://lesswrong.com/lw/b0e/a_model_of_udt_without_proof_limits/
http://lesswrong.com/lw/b0e/a_model_of_udt_without_proof_limits/
http://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=589500076
http://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=589500076

	Introduction
	Overview
	Cartesianism in Botworld

	Implementation
	Robots
	Items
	Commands and actions
	The step function
	Environment Phase
	Computaiton phase
	Summary

	Games

	Concluding notes
	Grid Manipulation
	Directions
	Botworld Grids

	Constree Language
	Robot/machine interactions
	Encoding and Decoding

	Helper Functions
	Bibliography

